46 research outputs found

    Actuation of Micro-Optomechanical Systems Via Cavity-Enhanced Optical Dipole Forces

    Get PDF
    We demonstrate a new type of optomechanical system employing a movable, micron-scale waveguide evanescently-coupled to a high-Q optical microresonator. Micron-scale displacements of the waveguide are observed for milliwatt(mW)-level optical input powers. Measurement of the spatial variation of the force on the waveguide indicates that it arises from a cavity-enhanced optical dipole force due to the stored optical field of the resonator. This force is used to realize an all-optical tunable filter operating with sub-mW control power. A theoretical model of the system shows the maximum achievable force to be independent of the intrinsic Q of the optical resonator and to scale inversely with the cavity mode volume, suggesting that such forces may become even more effective as devices approach the nanoscale.Comment: 4 pages, 5 figures. High resolution version available at (http://copilot.caltech.edu/publications/CEODF_hires.pdf). For associated movie, see (http://copilot.caltech.edu/research/optical_forces/index.htm

    Broadband Reconfiguration of OptoMechanical Filters

    Full text link
    We demonstrate broad-band reconfiguration of coupled photonic crystal nanobeam cavities by using optical gradient force induced mechanical actuation. Propagating waveguide modes that exist over wide wavelength range are used to actuate the structures and in that way control the resonance of localized cavity mode. Using this all-optical approach, more than 18 linewidths of tuning range is demonstrated. Using on-chip temperature self-referencing method that we developed, we determined that 20 % of the total tuning was due to optomechanical reconfiguration and the rest due to thermo-optic effects. Independent control of mechanical and optical resonances of our structures, by means of optical stiffening, is also demonstrated

    Active dielectric antenna on chip for spatial light modulation

    Get PDF
    Integrated photonic resonators are widely used to manipulate light propagation in an evanescently-coupled waveguide. While the evanescent coupling scheme works well for planar optical systems that are naturally waveguide based, many optical applications are free-space based, such as imaging, display, holographics, metrology and remote sensing. Here we demonstrate an active dielectric antenna as the interface device that allows the large-scale integration capability of silicon photonics to serve the free-space applications. We show a novel perturbation-base diffractive coupling scheme that allows a high-Q planer resonator to directly interact with and manipulate free-space waves. Using a silicon-based photonic crystal cavity whose resonance can be rapidly tuned with a p-i-n junction, a compact spatial light modulator with an extinction ratio of 9.5 dB and a modulation speed of 150 MHz is demonstrated. Method to improve the modulation speed is discussed.Air Force Office of Scientific Research (AFOSR grant FA9550-12-1-0261

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents on Section 3 and reports on nineteen research projects.Defense Advanced Research Projects Agency Grant F49620-96-0126Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant ECS 94-23737U.S. Air Force - Office of Scientific Research Contract F49620-95-1-0221U.S. Navy - Office of Naval Research Grant N00014-95-1-0715Defense Advanced Research Projects Agency/National Center for Integrated Photonics TechnologyMultidisciplinary Research InitiativeU.S. Air Force - Office of Scientific ResearchNational Science Foundation/MRSECU.S. Navy - Office of Naval Research (MFEL) Contract N00014-91-J-1956National Institutes of Health Grant R01-EY11289U.S. Navy - Office of Naval Research (MFEL) Contract N00014-94-0717Defense Advanced Research Projects Agency Contract N66001-96-C-863

    All-optical silicon modulators based on carrier injection by two-photon absorption

    No full text

    Coupling of modes analysis of resonant channel add-drop filters

    No full text
    corecore